The Design of a Network-Based Model for Business Performance Prediction
نویسندگان
چکیده
While much research work has been devoted to analysis and prediction of individuals’ behavior in social networks, very few studies about the analysis of business networks are conducted. Empowered by recent research on automated mining of business networks, this paper illustrates the design of a novel business network-based model called Energy Cascading Model (ECM) for the analysis and prediction of business performance using the proxies of stock prices. More specifically, the proposed prediction model takes into account both influential business relationships and twitter sentiments of firms to infer their stock price movements. Our empirical experiments based on a publicly available financial corpus and social media postings reveal that the proposed ECM model is effective for the prediction of directional stock price movements. The business implication of our research is that business managers can apply our design artifacts to more effectively analyze and predict the potential business performance of
منابع مشابه
A Heuristic Model for Predicting Bankruptcy
Bankruptcy prediction is one of the major business classification problems. The main purpose of this study is to investigate Kohonen self-organizing feature map in term of performance accuracy in the area of bankruptcy prediction. A sample of 108 firms listed in Tehran Stock Exchange is used for the study. Our results confirm that Kohonen network is a robust model for predicting bankruptcy in ...
متن کاملArtificial Neural Network Model for Predicting Insurance Insolvency
In addition to its primary role of providing financial protection for other industries the insurance industry also serves as a medium for fund mobilization. In spite of the harsh economic environment in Nigeria, the insurance industry has been crucial to the consummation of business plans and wealth creation. However, the continued downturn experienced by many countries, in the last decade, se...
متن کاملAn Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange
Nowadays, prediction of corporate bankruptcy is one of the most important issues which have received great attentions among academia and practitioners. Although several studies have been accomplished in the field of bankruptcy prediction, less attention has been devoted for proposing a systematic approach based on fuzzy neural networks. The present study proposes fuzzy neural networks to predi...
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملA Nonlinear Model of Economic Data Related to the German Automobile Industry
Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. But it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. Such evidence appeared in the German automobile industry as a consequence of the financial crisis in 2008/09, which influenced exchange rates and a...
متن کاملANN Based Modeling for Prediction of Evaporation in Reservoirs (RESEARCH NOTE)
This paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from a reservoir, where in classical and empirical equations failed to predict the evaporation accurately. The meteorological data set of daily pan evaporation, temperature, solar radiation, relative humidity, wind speed is used in this study. The performance of feed forward back pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013